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USE OF AN ORTHOEXPONENTIAL TRANSFORMATION IN THE STUDY OF THE NON-STATIONARY 
EQUATIONS OF THERMOELASTICITY AND THERMOVISCOELASTIClTY* 

R.I. MOKBIK and I.V. OLIYABNIK 

A system of orthoexponential polynomials (OEP) orthogonal in the 
interval :E [O,m) representing a special case of the orthoexponential 
Jacobi polynomials /l/ is studied. It is proposed to use the OEP as the 
kernels of an integral transformation (the OEP transformation) in time, 
since, compared with Laplace transformations, its use simplifies the 
procedure for obtaining the originals of the quantities required. The 
OEP transformation is used to solve the non-stationary equations of 
thermoelasticity and thermoviscoelasticity. The initial equations are 
reduced to the corresponding systems of ordinary triangular differential 
equations, and their general solutions are constructed. 

1. Definition. The polynomials oeP!, (x,t)(x is a non-negative number and n = 0,l . Z... .), 
specified in a semi-infinite interval t E IO, w) by the relations 

oep,(x,t) = y bnre-Pf; 
& 

bnk = (- 1)n+r 
(l-1) 

are called orthoexponential polynomials (OEP) . 
The polynomials oep, (x, t) are a special case of the Jacobi OEP p,,(a, p, t) for a=0 

and p =x - 1, whose expressions follow from the classical Jacobi polynomials P!pSfi)(z) /2/ 
after the following change of the argument z =2c-' - 1, a>--l, p>--1, i.e. 

oePn (x, t) = = pn (0, )I - 1, t) = PIcP’x-u (2e-’ - 1) (1.2) 

We will introduce into the discussion the class of functions L,,,[O, cc.) belonging to 
Hilbert space, for which the scalar product is given by the relation 

Cf.&T)= Sw)fmPt 

where w (t) is a function positive in t5 IO, co). Here and henceforth the integration is 
carried out from zero to infinity, unless stated otherwise. The real-valued function f(t), 
t e [O, iy)) belongs to L,,, [O; cc). provided that the condition \ f2 (t)w (t)dt < m holds. 

Since the Jacobi OEP are complete and closed on the interval tE [O. 00) and relations 
(1.2) hold, it follows that oeP,(x, t) (n = O,l, a,...) form an orthogonal system of functions 
with weight w (t) = e-"', x > 0, complete and closed in the class of functions L,,,[O, co). 

Let us state some properties of the polynomials oep,(x,t) whose validity follows from 
the analogous properties of the polynomials P,, (a, 6, t) and Rka*" (x): 

j e- 
6 

"oeP,, (x,t)oepk(x,t) dt = A. hl, = 
0, n#k 

x+h ’ 1, n=k 
(1.3) 

oep,(x,t)= 1. oep,(x, t) = (x + I)e-‘- x 

~ep,,+~ (x, t) = (A& - B,) oep, (x, t) - D, oep,_, (x, t), n = 1.2: . . . 

A 
n 

= (X+?(x-t2n+ 1) ) B = (Xi2n)[(x+++nZ--xl 

(n+f)(x+n) n (n + I)(% + n)(x + 2n - 1) 

D 
II 
= n(x+n-- I)(X+2n1 1) 

(n +- 1)(x + n)(x + 2n -1) 

(1.4) 

oep,(x, 0): 1; fit oep,,(x, t) = (-- l)-(n':-l) = b,,,, n = n.1.2,... (1.5) 
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oep, (x, t) = +f-- e-(x-l)f { -$ [(I - 5)” Ew+n-ll) lEEef 1 n=l,2,... 

((1.3) is the orthogonality relation, (1.4) are the reCUrrenCe relations, (1.5) are the bound- 
ary values and (1.6) is an analogue of the Rodrigues formula). 

The following differentiation formula holds for oep,(x,t) (n = 0,1,2,...) (this is 
proved by mathematical induction using the relations (1.4)): 

$ oep,(n,t) = 0 (1.7) 
n--l 

1 oep,(x,t)= - nocp,(x,t)- r(x + 2k)oepk(X,t), h = lag:*.. 
k$ 

The expressions for the higher-order derivatives of OEP follow from (1.7). 

$-oep,,(x,t) = (-- r~)~oep,(x, t)-Rn. 
k=0,1,2,... 
n =1,2,... 

n-1 
O,, = 0, Oln = 2 (x + 2m) oepm (x, t) 

m=0 
n--l 

@)kn = - n@l,-,,, + 2 (X f 24[(-m)k-l Oep,(x,t) + (- i)ii-l'ih.~~,m] 
m=Fo 

(1.8) 

Assertion. The polynomial oep,(x,t) has n simple zeros in the semi-infinite interval 

t E [O, -3). 
Proof. Let us assume that the polynomial oep,(x,t) changes its sign within the interval 

on passing through k points. It is clear that 0-G k< R. The Assertion will be proved, if 

k-n. Let us consider the function 

Q,(t)= k 

i 

1, kc0 

g;e-’ - e-fjh O<k<n, tE[O,m) 

Here tr are points, on passing through which the polynomial oep,(x, t) changes its sign. 

Clearly, the product Qk(t)oepn(%, t) e-t does not change its sign in the interval tE[O, co), 

therefore 
Se-XtQh.(t)oep,(x,t)dt#O 

From this it follows that k= n, since when k<n, we have 

s 0' oep,(x,t)e-%t = 0 

Let us consider the problem of expanding a function belonging to L,,, i0. oo), where 
w (t) = e@, x > 0, in a series in OEP. In /l/ Rau's theorem /3/ was used to prove the theorem 
for expanding the function f (r)E L,,, [O, m), w(t) = e-@+I)# (1 - e-‘)=,a > -1, p > -1 in a series 
in pn (a, B, t). By analogy with this theorem, we shall now formulate a theorem for expanding 
a function belonging to L,,, [O, w), w(t) = ecxL in a series in terms of the polynomials oep,,(x, 
t). 

Theorem 1. Let a function f(t), bounded and continuous in tE IO,,), have a piecewise 
continuous derivative which satisfies the condition lim e’f’(t)< Z-S as t+ CU. Then the 
series 

zofn(x + 2n)oep,(x,t) (f, = Sf(t)e-“‘oep,(x,t)dt) 

will converge, for x> 0, uniformly to f(t) in every closed interval t E [t,, t,] 0 ( t, ( 

t,< 30. 

A simple, and therefore important special practical case of the class of OEP, is the 
case x =O. 

2. An orthoexponential transformation (an OEP transformation) of a function belonging 
to L2,1u CO, LY)), w (t) = e-xt is described by the following pair of relations: 

OwlI {f) = f, = i ecxLf(t) oep, (x, t) dt, f(t) = 2, (x + 2n), f, oep, (x, t) (2.1) 
n==Ll 

We shall call the function f(t) the original function, or simply the original, and f, 
is the mapping of the function j(t). 

The corresponding transformation for x=0 was used successfully when studying non- 

stationary processes in elastic and viscoelastic media under the action of impulsive forces*. 
(*Mokrik R.I. and Oliyarnik I.V. Combined non-stationary problem of thermoviscoelasticity for 



a half-space. Deposited in UkrNIINTI, 1569, Lvov, 1984). 
The idea of obtaining the original in the form of a series in a system of orthogonal 

functions was used in the Laguerre transformation /4/, and in the finite-dimensional integral 
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transformations. There exists, however, an essential difference in the method of utilizing 
this idea in the latter transformations and in the Laguerre transformations (see (2.1)). 

Let us give some properties of the transformation (2.1). In what follows, we shall assume 
that f(t) and g @) are continuously differentiable functions which satisfy the conditions 
of Theorem 1. 

Linearity. If f, is the mapping of the function f (t) and g,, of the function g(t), 
then F,, = af,,+ bg, will be the mapping of the function F(t) = af (t)j+bg (t) where a, b are 

constants. 

Mapping of derivative of a function. Let f, be the mapping of the function f(t). Then 
there exists a mapping of the function F(t) =f’(t) given by the expression 

n--l 

Integration of the original. Let f,, be the mapping of the function f(t). 
mapping F, of the function 

F(t)=if(s)dz 
0 

will be given by the expression 

n-1 

F, = (x + 4-l [f, - kz (x + 2k) t(.kl 

(2.2) 

Then the 

(2.3) 

Forumulas (2.2) and (2.3) are proved using relations (2.1) and integration by parts 
taking relations (1.7) into account. 

Mapping a convotution of two functions. Let f,, be the mapping of the function f(t), and 
let g,, be the mapping of the function g(t). Then there exists a mapping h,, of the function 

w)=~f(t-F)g(~)~S 
0 

given by the expression 

i-l 

c& = (x + k)-‘, & =~O(k-f)/@O(+-k+i)i t>i 

where b,, is given by (1.1). 

Proof. The function h (t) is continuously differentiable and satisfies 
of Theorem 1. This follows from the corresponding properties of the functions 
Therefore h, exists. 

According to the definition (2.1) we have 

(2.4) 

the conditions 

f (‘) and g w. 

h,, = s Cwt oep, (K, t) dt i f (t - E) g (&) dp = 1 e-‘t o~P,, (x, t) dt S f (t - 5) g (E) H (t - 3 dk 0 
where IJ (t) is the Heaviside unit function. Changing the order 
this by changing the variables in the inner integral, we obtain 

)j,=S g(5)e-XE 2 (x + 2k) f&,k 06 E) 
k=0 

of integration and following 
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n-k 

Lo, (x, &) = s e-Y’oepn (x, t + E) oepk (x, t) dt = 2 01”. k, (x) e-(n-‘)x 
j=o 

We note that L,,L(x, E)= 0 for k> n. Substituting the value of J&k@, E) into the ex- 
pression for h, and using the expression 

e+@ = 5 c& oe**(x,5) 
i==0 

we obtain the relation (2.4). 

3. We shall illustrate the possibilities of an integral transformation on the equations 
of thermoelasticity and thermoviscoelasticity. Small perturbations in a certain unperturbed 
thermoelastic or thermoviscoelastic medium are described by the following system of equations: 

L, pad div u - L, rot rotu - L, grad T = L, (&%I - F) 

AT - a-'&T - LJdiv (8,~) + b-'ZW = 0, 1 = 1 _t t,h', 
(3.11 

Here u is the displacement vector, !l' is the change in the absolute temperature of the 
medium, p is its density, F is the mass force vector, W is a function of the heat sources, 
AT is the thermal conductivity, a is the thermal diffusivity, and tr is the relaxation 
time of the heat flux /5/. 

For a thermoelastic medium we have 

L1 = I, f 2p0, ,& = ~0, L, = Yo = aT @ho + 2b)? L4= i7 
(3.2) 

L, = qo = yoT&-' 

ho, po are the Lam& coefficients, aT,is the coefficient of linear thermal expansion of the 
medium, and T, is the initial temperature of the medium). 

For a thennoviscoelastic medium L,, . . ..L. are operators of the form 

L,cp = (a+ 2p).(P, L,cp = lJ.cp, L,cp = aT (3h + 

+21*).% L*cp =cp 
(3.3) 

L,Cp = a&-'T, (3h + 2$.Cp 

or 

L, =&P,P, + 2P,P,), 
-- 

L, = P,P,, LS =2P,Fa, L, = 2P,P,, 

“i 
L, = T,h;L,, P, = \',apa,k, 

dk 
I=1,2,3,4; atk=~ 

i3 
at 

(3.4) 

In order to simplify the algebra we shall restrict ourselves to considering the case of 
axisymmetric perturbations in the media in question, in a cylindrical system of coordinates 

(r, 0, z). Then the displacement vector u (ur, 0, u,) and temperature T will be functions of time 
t and of two spatial coordinates r and 2. Let us write the displacement vector u in the form 

u = grad @ + rot Y; cf, 3 @ (t, r, z), I = (0, y, 0) (t, r, 2) 

(@ and UT are the scalar and vector potentials). In regions free of mass forces and sources 
(F 3 0, w= O), Eqs.(3.1) can be reduced to 

L,‘m - L,p&Q = L,T, L, (AY - r-v) - L,pa,aY = 0 
AT - a-'&T + LJc~~A@ = 0 (A = a72 + r-la, + ~7,~) (3.5) 

Let us carry out, in (3.51, the OEP transformation (2.1) with respect to time t, and the 
Handel transformation with respect to the radial coordinate r. Taking into account the proper- 
ties of the above transformations, we obtain (a prime denotes a derivative with respect to z) 

(3.6) 
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The functions 

i-0 for CD. T. 

n-1 

Tn” - qnTn + qln (%” - Ea@,) = k; F,(Tk, @k* ‘h”) 

qn = Ea + 4%, t,, = (x + n) II + (x + 4 t,l 
ink = (x + 24 [1 + (x + n + k) (n - k) d, 0r.k = (X + 24 

(x + n + k) 

(n - k). 

On (5, 4, Yn (5, 4, T, (5, 4 (n = 0, 1, 2, . . .) are given by the formula 

(@,,I,, T,)(S, z,=&~ oep,(x,t)rIi(&)(Q, YY, T) 

(t, r, z) &fir 
(3.7) 

i = 1 for 9"; 5 is the parameter of the Hankel transformation and J,(tr) 
is an i-th order Bessel function of the first kind. 

The values of the remaining quantities are: 

Pn = 5” + (x + q/cl*, Yf3 = YcJ@o + 2P~o)~ s, = 5” + (x + n)“lc,* 

%I = ,l"LI, F, (. . .) = wdh (E, z)k’, F, (. . .) = o,,Y’, (5, z)/c,~ 
l’s (* . *) = ‘hk [a-‘Tt (5~ Z) - qo (ok” (E, Z) - E2@, (E, z))] 

in the case of thermoelasticity, 

q* = aTToT, a* = ao&& u* = PO ankpk* 

k=O k=O 

(l”.k*, hk*) = s t+‘oep, (% t) (b h) (t) dt 
F, (* . *) = [(@,,k/c: - &?,,k) @‘r + g,,@,,” - p*Tkl (I - gdl 

F, (. * .) = [(o,k/c2a - ?&d yy, i xnkyh)(l (I - Xdl 

F, (. . .) = crtk [a-‘Tk - q0 (a; - E*@,) + ~TT,@~OH~, T %oG,) A%'] f 

~*t,,CCnr(@)r" - ~2%)'%; 

in the case of thermoviscoelasticity for the relations (3.3), and 

N,+N, 
pn = Ea + p izo Ai (% + n)i+a [ $ Hi (x i a)i]-l 

i=0 

NrkN, 
Yn = ?ZO ci (x + 72)’ rig&(% + n,q-l, qn= [I + (x + n) trlN~Gc~ f nY 

S, = 52 + 2p 5 up (x + .)i,z [i%o 4p (x j n,i]-l 
i=0 

for relations 
The form 

is determined 
are expressed 

(3.4). 
of the functions F,(...)(j = 1,2,3) for a specific model of a viscoelastic body 
in accordance with (1.8), (2.2) and (3.41, and the constants Ai,Bi 
in terms of the constants of the model of a viscoelastic body. 

and C, 

Thus we have reduced the problem of solving the initial system of Eqs.(3.5) to that of 
solving a sequence of inhomogeneous ordinary differential equations. We note that the right- 
hand sides of (3.5) (the inhomogeneous terms) represent a combination of solutions of the 
previous equations. Finally we add, that in the case of non-zero initial conditions the right- 
hand sides of Eqs.(3.6) will contain terms determining the values of the quantities required, 
and of their derivatives at the initial instant. 

M = max {N, + N,, Nz f N,} 
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When the domain of variation of the radial variable 21 is finite, then a finite-dimen- 
sional Hankel transformation should be used instead of the Hankel transformation (3.7). The 
end result is again a sequence of inhomogeneous ordinary differential equations. 

4. Let us now pass to the problem of constructing a general solution of the system of 
Eqs.(3.6), which represents a special case of the infinite triangular system of ordinary dif- 
ferential equations. A theorem of the existence of a system of fundamental solutions of such 
systems was proved in /6/. 

Unlike in the triangular type systems discussed in /4/, the differential operators on 
the left-hand sides of (3.6) depends on the parameter n. This particular property makes it 
possible to write, in a relatively simple way, the general solution for the systems of dif- 
ferential equations in question. 

After carrying out the transformations, Eqs. (3.6) reduce to the form 

Q”, - (Pn + Qn - L%) 0,” + (PnQn - Yn?l&2) a)‘, = 
n--l 

k&%tF3(. . .) + F,“(. . .)-qnF1(. . .)I, Y,c-ss,Y,, = 

11-I 
kp&.); n=0,1,2 (... 

(4.1) 

After determining @,,(E,z) from the first equation of (4.1), we obtain the functions 

T, (5, z) (n = 0, 1, 2, . . .) with help of the first equation of (3.6). 
Since (4.1) can be solved consecutively, it is clear that the general solution of the 

n-th equation can be written as follows: 

where U,,i (g, z) and Unj* (5,~) (i = 1, 2,3, 4; j = 1, 2) are the fundamental systems of solutions 
of the homogeneous differential equations corresponding to (4.1), &I!, cc;,* are unknown 

quantities, and @,,* (5,~) and Y,* (5, Z) are particular solutions of (4.1). As we said 
before, the differential operator of the left-hand sides of (3.6), and hence also of (4.1), 
depend on n. It is therefore natural to write the particular solutions in the form of a 
linear combination of solutions of the previous equations: 

The constants ~"2 1, and Cr:$ are found from (4.1). Taking the latter relations into 

account, we can write the general solution in the form 

where u,, (I. z), U,,* (5,~) are the fundamental systems of solutions of (4.1) as defined in /6/. 
The constants $i, c$(' (li = 0, 1, . ., II - 1) are determined, as we have already said by 

substitution into (4.1). An important property of the OEP transformation is the fact, that, 
irrespective of the form of the right-hand sides of (4.1), i.e., irrespective.of the model of 
the medium used, the formula for determining the constants remains the same: 

The arbitrariness remaining in the definition of (0 01* C,L,i, CM makes it possible to satisfy 

the boundary conditions for the quantities required. 
It remains to note that everything that has been said about the transformation (2.1) for 

X>OP applies. equally to the case x c-0. 
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ON THE STABILITY OF RODS FOR STOCHASTIC EXCITATIONS* 

V.D. POTAPOV 

The stability of lnotion of an elastic rod in a viscous medium compressed 
by a randomly acting force is studied. The conditions of stability of 
the rod acted upon by a stationary process with bilinear spectral 
density are obtained. The dependence of the statistical moments of the 
amplitude of the finite flexure of the rod under stationary-motion 
conditions on the parameters of the compressing force and the amplitude 
of the initial deformation is analysed. A number of problems concerning 
the stability of longitudinal flexure of viscoelastic constructions 
acted upon by random loads were discussed in /l-3/. 

1. A stationaryi process r&h ratitnd-fraction spectral density. Let us consider an 
elastic rod of length 2, hinged at each end and compressed by forces F. The rod is in a con- 
tinuous viscous medium and its equation of equilibrium has the form 

awlat = --A {ElwIV + IF, + F, (C)l w”} (1.9 

Here d is the viscosity constant of the material of the medium, F,, F, (t) are the 
deterministic (constant with respect to time) component of the compressive load, and a 
random oscillation with zero expectation value. 
accepted one. 

The remaining notation is the generally 

Let the deflection of the rod at the initial instant be described by the sinusoid 

w (0, z) =: fk” sin (knxil) 

We shall seek a solution of (1.1) in the form of such a sinusoid, whose amplitude fk (t) 
is a solution of the equation 

fh! is a deterministic constant). 
Let us assume that the randoln process 

noise" through a linear filter 
@(r) is the result of the passage of normal "white 

18PrikZ.Matem.Mekhan., 53,6,1006-1013,1989 


